首页> 外文OA文献 >Fabrication of Nonwoven Coaxial Fiber Meshes by Electrospinning
【2h】

Fabrication of Nonwoven Coaxial Fiber Meshes by Electrospinning

机译:电纺制无纺同轴纤维网

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is a great need for biodegradable polymer scaffolds that can regulate the delivery of bioactive factors such as drugs, plasmids, and proteins. Coaxial electrospinning is a novel technique that is currently being explored to create such polymer scaffolds by embedding within them aqueous-based biological molecules. In this study, we evaluated the influence of various processing parameters such as sheath polymer concentration, core polymer concentration and molecular weight, and salt ions within the core polymer on coaxial fiber morphology. The sheath polymer used in this study was poly(ɛ-caprolactone) (PCL), and the core polymer was poly(ethylene glycol) (PEG). We examined the effects of the various processing parameters on core diameters, total fiber diameters, and sheath thicknesses of coaxial microfibers using a 24 full factorial statistical model. The maximum increase in total fiber diameter was observed with increase in sheath polymer (PCL) concentration from 9 to 11 wt% (0.49 ± 0.03 μm) and salt concentration within the core from 0 to 500 mM (0.38 ± 0.03 μm). The core fiber diameter was most influenced by the sheath and core polymer (PCL and PEG, respectively) concentrations, the latter of which increased from 200 to 400 mg/mL (0.40 ± 0.01 μm and 0.36 ± 0.01 μm, respectively). The core polymer (PEG) concentration had a maximal negative effect on sheath thickness (0.40 ± 0.03 μm), while salt concentration had the maximal positive effect (0.28 ± 0.03 μm). Molecular weight increases in core polymer (PEG) from 1.0 to 4.6 kDa caused moderate increases in total and sheath fiber diameters and sheath thicknesses. These experiments provide important information that lays the foundation required for the synthesis of coaxial fibers with tunable dimensions.
机译:迫切需要可调节生物活性因子(例如药物,质粒和蛋白质)递送的可生物降解的聚合物支架。同轴电纺丝是一种新颖的技术,目前正在探索通过将其嵌入水基生物分子中来创建此类聚合物支架。在这项研究中,我们评估了各种加工参数(例如鞘聚合物浓度,芯聚合物浓度和分子量以及芯聚合物内的盐离子)对同轴纤维形态的影响。本研究中使用的皮聚合物为聚(ε-己内酯)(PCL),芯聚合物为聚(乙二醇)(PEG)。我们使用24个全因子统计模型检查了各种加工参数对同轴微纤维的纤芯直径,总纤维直径和鞘层厚度的影响。随着皮层聚合物(PCL)浓度从9%增至11%(wt%)(0.49%±0.03µm)和芯内盐浓度从0%增加至500µmM(0.38%±0.03µm),观察到了总纤维直径的最大增加。芯纤维直径受皮和芯聚合物(分别为PCL和PEG)的浓度影响最大,后者的浓度从200μg/ mL增加到400μg/ mL(分别为0.40±±0.01μm和0.36±±0.01μm)。核心聚合物(PEG)浓度对皮层厚度有最大的负面影响(0.40±0.03μm),而盐浓度最大的正面影响(0.28±0.03μm)。核心聚合物(PEG)的分子量从1.0增加到4.6kkDa,引起总纤维和鞘纤维直径和鞘厚度的适度增加。这些实验提供了重要的信息,为合成具有可调尺寸的同轴纤维奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号